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GOOD PARAMETERS FOR A CLASS OF NODE SETS 
IN QUASI-MONTE CARLO INTEGRATION 

TOM HANSEN, GARY L. MULLEN, AND HARALD NIEDERREITER 

Dedicated to the memory of D. H. Lehmer 

ABSTRACT. For 2 < s < 12 we determine good parameters in a general con- 
struction of node sets for s-dimensional quasi-Monte Carlo integration recently 
introduced by the third author. Some of the parameters represent optimal 
choices in this construction and lead to improvements on node sets obtained by 
earlier techniques. 

1. INTRODUCTION 

We consider the problem of multidimensional numerical integration, with the 
closed s-dimensional unit cube Is = [0, 1 Is, s > 2, as a normalized integration 
domain. In the standard Monte Carlo method the integration rule 

(1) JIS (t)dt f(Xn) 

is used, where the nodes xO, xI, ..., XN-1 E Is are N independent random 
samples from the uniform distribution on Is. In practical implementations of 
this method, one actually works with nodes derived from uniform pseudoran- 
dom numbers, such as Lehmer's linear congruential pseudorandom numbers [5]. 
Concretely, if xo, xl, ... is a sequence of uniform pseudorandom numbers in 
[0, 1], then one employs the nodes 

Xn= (xn, xn+, ..., Xn+5_I) E Is for 0 < < N< -1. 

The integration error incurred in (1) with these nodes was analyzed by Nieder- 
reiter [9] for the cases of Lehmer pseudorandom numbers and shift-register 
pseudorandom numbers. 

It is well known that under mild regularity conditions on the integrand f 
we may improve on Monte Carlo integration by using the approximation (1) 
with suitably chosen deterministic nodes. This yields the quasi-Monte Carlo 
method for numerical integration, which is surveyed, e.g., in Hua and Wang 
[3] and Niederreiter [8], [14]. To guarantee small integration errors, the nodes 
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XO, xI, ... , XN 1 E I = [0, 1)s have to be selected in such a way that their 
star discrepancy DN is small. Here 

DN = SUP IEN(J) - Vol (J)|, 
J 

where, for an arbitrary subinterval J of Is, EN(J) is N-1 times the number 
of 0 < n < N - 1 with x, E J and Vol (J) denotes the s-dimensional 
volume of J, and where the supremum is extended over all J of the form 
J = [TisI [0, ti) with 0 < ti < 1 for I < i < s . 

Currently, the most effective constructions of node sets for quasi-Monte Carlo 
integration are based on the theory of nets. We fix the dimension s > 2 and 
an integer b > 2. By an elementary interval in base b we mean a subinterval 
J of Is of the form 

s 

J = J7J [aib"d', (ai + 1)b-dl) 
i=l 

with integers di > 0 and 0 < ai < bd, for l < i < s. 

Definition 1. Let 0 < t < m be integers and put N = btm. Then the points 
xO, xI, ... , xN1 E Is form a (t, m, s)-net in base b if every elementary 
interval J in base b with Vol (J) = b- contains exactly bt points x, i.e., 
EN(J) = Vol (J) . 

The general theory of nets was developed in Niederreiter [11]; see also [14, 
Chapter 4] for an expository account. For the special case b = 2 on which 
we will concentrate, some results were obtained earlier by Sobol' [17]. The case 
b = 2 offers the advantage of easier implementation of the known constructions 
of nets, and recent tests suggest that nets in base 2 tend to perform better in 
numerical integration than nets in larger bases [2]. The following discrepancy 
bound for nets in base 2 is a special case of results in [11, ?3]. 

Theorem A. The star discrepancy DN of a (t, m, s)-net in base 2 satisfies 

D* < Bs2tN'-l(log N)s-' + 0(2tN- 1 (log N)s-2), 

where the implied constant in the Landau symbol depends only on s, and where 
Bs = 1/(log4)s-I for 2 < s < 4 and 

(s - 1)!(log 2)s- lf s 

It is clear from this discrepancy bound, and also from Definition 1, that 
the value of t should be as small as possible. Prior to the present work, the 
least value of t for each dimension s > 2 was obtained by combining the 
construction of a special class of sequences in Niederreiter [ 12] with [ 1 1, Lemma 
5.15]. If T2(s) is defined by [12, equation (10)], and if we put Vs = T2(s - 1) 
for s > 2, then this yields, for every s > 2 and m > Vs, a (Vs, m, s)-net 
in base 2. For the range of dimensions discussed in this paper, we obtain the 
values of Vs in Table 1 from [12, Table II]. 

TABLE 1. Values of Vs for 2 < s < 12 

s 2 3 4 5 6 7 8 9 10 11 12 
VS 0 0 1 3 5 8 11 14 18 22 26 
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Furthermore, there are known lower bounds on t that are obtained from 
combinatorial constraints on the existence of nets; see Mullen and Whittle [7] 
and Niederreiter [15]. For the case b = 2, a result in [7] yields the following: 
for m > t + 2 a (t, m, s)-net in base 2 can only exist if s < 2t+2 -1 . This 
implies the lower bound 

(2) t2[log2(s+l)1-2 
provided that m > t + 2, where log2 is the logarithm to the base 2 and Fxl 
denotes the smallest integer > x. Except for some small dimensions s, there 
is a considerable gap between the lower bound in (2) and the values of Vs in 
Table 1. 

It is one of the aims of the present paper to reduce this gap. This is achieved 
by considering a construction of nets recently introduced in Niederreiter [13] 
and by searching for optimal, or nearly optimal, parameters in this construction. 
A detailed description of these nets and their properties is provided in ?2. The 
search procedure for good parameters is described in ?3 and the computational 
results are reported in ?4. 

2. DESCRIPTION OF THE NODE SETS 

We describe node sets for the quasi-Monte Carlo integration (1) which form 
(t, m, s)-nets in base 2 and were introduced by Niederreiter [13]. Further 
results on these nets can be found in [ 14, Chapter 4]. It is convenient to use an 
equivalent, but simpler, description of these nets given in [16]. 

Let F2 = {O, I} be the field with two elements and let F2((x-')) be the field 
of formal Laurent series over F2 in the variable x-l . Thus, the elements of 
F2((x-')) have the form k=w Uk X-k , where w is an arbitrary integer and 
all Uk E F2. Note that F2((x-1)) contains the rational function field F2(x) as 
a subfield. For an integer m ?, 1 let Om be the map from F2 ((x'-)) to the 
interval [0, 1) defined by 

(3) q$m (ZUkXk) E Uk2. 
k=w k=max(1, w) 

For a given dimension s > 2 we choose f E F2[x] with deg(f) = m and 
g,.., gs E F2[x]. For n = O, 1, ... , 21 - I let 

m-1 rn- 

n = Ear(n)2, 
r=O 

with all ar(n) E F2, be the binary expansion of n. With each such n we can 
then associate the polynomial 

m-1 

n(x) = Ear(n)xr E F2[x]. 
r=O 

Then we define the node set consisting of the 2m points 

(4 ($n (l(x) l (x) n 
Kn(gs(X) ))AIs (4 n =O(/m f(x) 

5 .. ** O 4m f(x) )y 

fr_n=O 1 . 2m -I 
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We write g = (gi, . . ., gs) E F2[x]s for the s-tuple of polynomials g1, ... , gs 
and we use the convention deg(O) = -1. The following quantity plays a crucial 
role. 

Definition 2. The figure of merit p(g, f) is given by 
S 

p(g, f) =s-1+ min deg(hi), 
i=1 

where the minimum is extended over all nonzero s-tuples (hl, ... , hs) E F2[x]s 
for which deg(hi) < m for 1 < i < s and f divides Es=, gihi. 

We always have 0 < p(g, f) < m . Note that the figure of merit in Definition 
2 differs by 1 from the figure of merit introduced in [ 13, Definition 3]. Observing 
this fact, we can now rephrase [13, Theorem 4] as follows. 

Theorem B. The points in (4) form a (t, m, s)-net in base 2 with t = m - 
P(g, f). 

Therefore, to obtain (t, m, s)-nets in base 2 with a small value of t, and 
hence good node sets for quasi-Monte Carlo integration, we should choose the 
parameters f and g in such a way that p(g, f) is large. If s > 2 and f E F2[x] 
with deg(f) = m > 1 are fixed, and if g runs through the set 

Gs(f) = {g= (g, ..., gS) E F2[x]s: gcd(gi, f) = 1 
and deg(gi) <m for 1 < i<s}, 

then it follows from results in [13], [14, Chapter 4] that, on the average, the 
node set (4) has star discrepancy D* = O(N-1(logN)s). Thus, for any s and 
f a good choice of g can always be made, but the proof of this result is 
nonconstructive. 

It should be noted that we need the Laurent series expansion of the rational 
functions n(x)gi(x)/f(x) in (4) in order to calculate their images under Om 
according to (3). A very convenient choice for this purpose is f (x) = xm, since 
for any c(x) = EZ=0 cjxj E F2[x] the Laurent series expansion of c(x)/xm is 
immediately obtained as 

c(x) _q 

xm cJx 
j=O 

In the remainder of this paper, we assume that the choice f (x) = xm has been 
made. For this case, there is even a more precise existence theorem due to 
Larcher [4], namely, that for every s > 2 there exists a g such that the node 
set (4) has star discrepancy DN = O(N-I(logN)s-I log log(N+ 1)) . Again, the 
proof of this result is nonconstructive. 

3. THE SEARCH PROCEDURE 

Given the dimension s > 2 and the polynomial f(x) = xm E F2[x] with 
m > 2, we want to find an s-tuple g = (gi, ... , gs) of polynomials over F2 
such that the figure of merit p(g, f) is large. As explained in ?2, this yields then 
a (t, m, s)-net in base 2 with a small value of t. We impose the restriction 
s < 12 since it is in this range where quasi-Monte Carlo integration is most 
useful (compare with [2]). 
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In the case s = 2 there is a general construction of a g = (gi, g2) which 
yields the optimal value of p(g, f) . Put gl (x) = 1 and 

(5) g2 (X) = Exm-Lm/22J 

j=0 

with r = [log2 mI, where L J denotes the greatest integer function. Then [10, 
Theorem 2] shows that all partial quotients in the continued fraction expansion 
of g2(x)/xm have degree 1. Hence it follows from a formula mentioned in 
[13] (see also [14, Theorem 4.46] for a detailed proof) that with this choice of 
g = (gi, g2) we obtain p(g, f) = m. Since we always have p(g, f) < m, 
as noted after Definition 2, we thus get the maximal value of p(g, f). By 
Theorem B the corresponding points in (4) form a (0, m, 2)-net in base 2. 

For s > 3 no general construction of s-tuples g with a large value of 
p(g, xm) is known, and as a result we have to resort to a computer search. 
In order to arrive at a manageable problem, we must restrict the values of m. 
We take m < 20 for s = 3 and s = 4, and m < 10 for 5 < s < 12. The 
larger range of values of m is used for s = 3 and s = 4 since these dimensions 
occur frequently in applications. Because of computer limitations, only for low 
dimensions are larger values of m feasible in our search. In order to implement 
the search, Fortran code was written and run on a SUN SPARCstation 1+. We 
note that in the context of shift-register pseudorandom numbers, Mullen and 
Niederreiter [6] and Andr6, Mullen, and Niederreiter [1] have implemented 
search procedures for other types of figures of merit. 

As indicated above, for a given s > 3 and m > 2 we let f(x) = xm and 
wish to locate an s-tuple g = (g1, ... , gs) E F2[x]s so that the figure of merit 

p(g, xm) defined in Definition 2 is large, i.e., as near as possible to m . Without 
a serious loss of generality we may assume that g, = 1 . 

When s and m are both small, an exhaustive search was conducted over 
all s-tuples g so that the resulting figure of merit was optimal. When either s 
or m is large, it was not possible to do an exhaustive search, and so in these 
cases the resulting figure of merit is large but not necessarily optimal. In these 
nonexhaustive cases the resulting values of t = m - p(g, xm) in Table 2 of ?4 
will be marked with an asterisk (*). 

In the actual search process, given an s-tuple g = (gl, ..., gs) E F2[x]s 
with g, = 1, we search for a nonzero s-tuple h = (h1, ... , hs) E F2[x]s with 
the property that >I?= deg(hi) = d is small and Es=, gihi O0 (mod xm). 
Those h for which Es>= deg(hi) > d need not be considered in Definition 
2. Our search then proceeds over all nonzero h with Es=, deg(h1) < d to 
see if Es=, gihi 0 (mod xm). If such an h is found, then the process is 
repeated with this smaller value of d. We continue until no smaller value of 
d is found, so that the resulting figure of merit is thus obtained as p(g, xm) = 
s - 1 + min ELI deg(hi). After completing the calculation of the figure of 
merit p(g, xm) for a given g, we consider other s-tuples g' in order to try 
and locate a figure of merit p(g', xm) > p(g, xm). This process was then 
continued until either all g were tested, or in the nonexhaustive cases, until a 
point was reached at which after testing many s-tuples g, the resulting largest 
figure of merit obtained for the given values of s and m failed to increase in 
value. 
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In spite of using nonexhaustive searches for numerous values of s and m, it 
will be seen in the next section that when s > 5 our results yield (t, m, s)-nets 
in base 2 with smaller values of t than those obtained from the best previously 
known constructions. 

4. COMPUTATIONAL RESULTS 

In this section we present the results of our searches. In Table 2 for s = 3 
or s = 4 and m < 20, and for 5 < s < 12 and m < 1O, we list the value 
of t = m - p(g, xm) for which we located an s-tuple g with p(g, xm) as 
large as possible. As a result, for a given s and m, the listed value of t is 
the smallest t (in the set that we searched) for which the corresponding points 
in (4) form a (t, m, s)-net in base 2. We recall from ?3 that if our search 
was nonexhaustive, the corresponding t is marked with an asterisk. We also 
indicate with a prime (') those values of t for which we have equality in (2) 
and hence are best possible values of t for a (t, m, s)-net in base 2. Thus, a ' 
indicates that for the given values of s and m it is not possible by any method 
to construct a (ti, m, s)-net in base 2 with t1 < t. 

TABLE 2. Values of t in a (t, m, s)-net in base 2 

m\S 3 4 5 6 7 8 9 10 11 12 

2 1 1 1 1 1 1 1 1 1 1 
3 1 1' 1' 1' 2 2 2 2 2 2 
4 1 1' 1' 1' 2 2' 2' 2' 9' 2' 
5 1 1' 2 2 2 2' 2' 2' 3* 3* 
6 1 1' 2 2 3* 3* 3* 3* 4* 4* 
7 1 1' 2 2* 3* 3* 4* 4* 4* 4* 
8 1 2 2* 3* 4* 4* 4* 4* 4* 5* 
9 2 2 3* 4* 4* 5* 5* 5* 5* 6* 

10 1 2* 3* 4* 4* 5* 6* 6* 6* 6* 
11 2* 3* 
12 2* 3* 
13 2* 3* 
14 2* 4* 
15 3* 4* 
16 2* 4* 
17 3* 4* 
18 3* 5* 
19 4* 5* 
20 4* 6* 

We now compare the results of our efforts against previously known methods, 
in particular to the values of t given in Table 1 as well as considering them in 
relation to the lower bound from (2). For s = 3 the construction of Niederreiter 
[12] yields t = 0, which when compared to (2), yields a best possible (0, m, 3)- 
net in base 2 for any m > 0. Similarly, for s = 4 he obtains a value of t = 1 
as well as a (1, m, 4)-net in base 2 for any m > 1 , which is best possible for 
m > 3. For s = 3 and s = 4 our construction gives a net with a very small 
but not best possible value of t, unless s = 4 and 3 < m < 7. However, it 
should be noted that the nets in (4) with f(x) = xm are, in general, easier to 
implement than the nets obtained from [12]. 

From a comparison of Table 2 with Table 1 we see that for each 5 < s < 12, 
our construction yields a smaller value of t. In fact, in numerous cases denoted 
with a ', our search procedure gives a best possible value of t. As s increases, 
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the level of improvement of our construction over that from [ 12] also increases, 
even in the cases where nonexhaustive searches were conducted. For fixed s, 
as m increases, our values of t will be less than those of [12] (which do not 
increase with m ) at least as long as m < V,, where V, is given in Table 1. For 
fixed s our values of t increase slowly with m. 

We note from [7] that for b = 2 and t > 0 one can construct a (t, t + 2, 
2t+2- 1)-net in base 2, which according to (2) is best possible. Thus, for example, 
for the cases of a (O, 2, 3) or (1, 3, 7)-net in base 2, the methods of [7] 
give a slight improvement. The methods of [7], however, apply only to the 
construction of (t, t + 2, 2t+2 - 1)-nets, while the methods presented here can 
be applied to the construction of (t, m, s)-nets in base 2 for any s > 2 and 
m > 2. For ease of implementation, we note that if C is the complete residue 
system of polynomials of degree less than m modulo xm with m = t + 2 and 
g = C\{0, Xm-l}, then p(g, xm) = 2. Hence, we obtain a (t, t +2 2 t+2 2)- 
net in base 2 for any t > 0. See Table s = 6 with rn = 3 for an illustration. 

We close by providing tables of the s-tuples g of polynomials that give the 
values of t in Table 2. As indicated in ?3, for s = 2 and m > 2, using (5), 
one can construct a (O, m, 2)-net in base 2. For s > 3 in Table s we provide 
the following data. 

TABLE S 

m t g1 g2 ... gs 

In the first column is the value of m, while the second column contains the 
value of t for a (t, m, s)-net in base 2, where t = m - p(g, xm) and where 
p(g, xm) is the largest figure of merit obtained from our calculations for the 
given values of s and m. For i = 1, ... , s the number listed under gi is 
the number whose base-2 representation corresponds to the coefficients of gi 
where gi E F2[x]. Thus a polynomial g E F2[x] with g(x) = Emi1 aix' is 

represented by the corresponding number EmZ % ai2i . 

TABLE s=3 TABLE s=4 

m t gI 92 93 m t g1 92 g3 94 
2 1 1 1 1 2 1 1 1 1 1 
3 1 1 2 3 3 1 1 2 3 5 
4 1 1 5 6 4 1 1 5 6 9 
5 1 1 10 13 5 1 1 10 13 18 
6 1 1 19 25 6 1 1 25 39 47 
7 1 1 35 49 7 1 1 45 61 81 
8 1 1 90 97 8 2 1 36 49 66 
9 2 1 74 97 9 2 1 77 98 133 

10 1 1 321 402 10 2 1 183 316 321 
11 2 1 381 615 11 3 1 209 268 326 
12 2 1 2382 2631 12 3 1 291 1286 2281 
13 2 1 6238 5771 13 3 1 5964 6461 6958 
14 2 1 11097 11345 14 4 1 1528 2523 3518 
15 3 1 26294 26791 15 4 1 9629 11618 13608 
16 2 1 24250 25245 16 4 1 4387 5382 6376 
17 3 1 80092 82081 17 4 1 29394 33132 96799 
18 3 1 67899 238395 18 5 1 39611 62523 182139 
19 4 1 66000 80952 19 5 1 101150 228484 355818 
20 4 1 666401 696305 90 6 1 301297 392945 484593 
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TABLE s=5 TABLE s=6 

m t 91 92 93 94 95 m t gi 92 93 94 95 96 

2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 
3 1 1 2 3 5 6 3 1 1 2 3 5 6 7 
4 1 1 5 6 9 13 4 1 1 5 6 9 13 14 
5 2 1 4 6 9 11 5 2 1 4 6 9 11 14 
6 2 1 9 13 17 20 6 2 1 14 20 25 31 34 
7 2 1 19 27 35 41 7 2 1 18 34 59 83 89 
8 2 1 43 60 103 142 8 3 1 18 26 34 40 199 
9 3 1 40 50 65 350 9 4 1 22 28 33 40 399 

10 3 1 82 113 136 749 10 4 1 36 49 129 499 754 

TABLE s=7 TABLE s=8 

m t 91 92 93 94 95 96 97 m t gi 92 93 94 95 96 97 98 

2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 
3 2 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 
4 2 1 2 3 4 5 6 7 4 2 1 2 3 4 5 6 7 9 
5 2 1 5 6 9 13 14 25 5 2 1 4 6 9 11 14 17 20 
6 3 1 5 6 8 11 17 39 6 3 1 5 6 8 11 17 18 39 
7 3 1 8 15 18 20 33 100 7 3 1 11 13 18 21 34 38 99 
8 4 1 9 13 17 37 127 195 8 4 1 18 23 25 31 34 40 199 
9 4 1 23 29 33 40 234 410 9 5 1 11 14 16 20 63 177 300 

10 4 1 41 73 104 206 301 400 10 5 1 777 807 836 865 894 923 953 

TABLE s=9 

m t 91 92 93 94 95 96 97 98 99 
2 1 1 1 1 1 1 1 1 1 1 
3 2 1 1 1 1 1 1 1 1 1 
4 2 1 2 3 4 5 6 7 9 10 
5 2 1 5 6 9 13 14 17 21 22 
6 3 1 4 6 9 11 14 17 20 43 
7 4 1 5 6 9 13 14 41 66 100 
8 4 1 11 13 20 54 115 136 177 200 
9 5 1 11 56 101 146 190 235 280 290 

10 6 1 9 16 23 61 116 203 304 422 

TABLE s=10 

m t 91 92 93 94 95 96 97 98 g9 gio 

2 1 1 1 1 1 1 1 1 1 1 1 
3 2 1 1 1 1 1 1 1 1 1 1 
4 2 1 2 3 4 5 6 7 9 10 11 
5 2 1 5 6 9 13 14 17 21 22 25 
6 3 1 5 6 8 11 17 18 21 28 40 
7 4 1 5 7 8 12 17 26 41 62 74 
8 4 1 11 13 19 20 54 115 136 177 200 
9 5 1 11 56 101 146 190 235 245 290 479 

10 6 1 8 13 78 104 205 320 431 988 1000 
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TABLE s=11 

m t 91 92 93 94 95 96 97 98 99 91o 9i1 
2 1 1 1 1 1 1 1 1 1 1 1 1 
3 2 1 1 1 1 1 1 1 1 1 1 1 
4 2 1 2 3 4 5 6 7 9 10 11 12 
5 3 1 2 3 4 6 9 11 13 17 20 22 
6 4 1 2 3 12 20 28 38 42 45 52 58 
7 4 1 4 6 18 29 40 51 76 87 99 110 
8 4 1 14 30 104 110 121 140 161 186 197 230 
9 5 1 9 12 73 150 177 209 263 274 377 402 

10 6 1 9 12 160 381 415 496 587 618 651 700 

TABLE s=12 

m t 91 92 93 94 95 96 97 98 99 91o 911 912 
2 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 2 1 1 1 1 1 1 1 1 1 1 1 1 
4 2 1 2 3 4 5 6 7 9 10 11 12 13 
5 3 1 2 3 4 5 6 8 11 13 17 18 20 
6 4 1 2 3 17 20 23 27 34 39 46 51 56 
7 4 1 7 18 29 40 51 65 76 87 99 110 123 
8 5 1 10 37 60 82 104 127 154 176 199 221 243 
9 6 1 17 36 81 106 126 171 215 260 350 439 504 

10 6 1 47 105 163 222 280 720 778 837 895 954 1012 
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